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LElTER TO ' h E  EDITOR 

External surface of site percolation clusters in three dimensions 

Qi-zhong Cao and Po-Zen Wongt 
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, 
USA 

Received 2 September 1991 

Abstract. We study the external surface of site-percolation dusters in three dimensions by 
Monte Carlo simulations on a simple cubic lattice at p =p,=O.3117. Our results show that 
for all cluster sizes, s. more than 99.8% of the occupied sites are on the external surface. 
The number of unoccupied boundary sites 1 is found to obey t i s  = ( I  -p& pr+ As-" with 
4 = 0.54 = 1 - 0, in agreement with the prediction of a scaling argument. The same argument 
also predicts 4 = 0.60 in two dimensions and it is confirmed. The relevance of these results 
to dynamical percolation growth models is discussed. 

Since the pioneering work of Leath (1976a,b), it has been well known that the 
surface-to-volume ratio of site-percolation clusters tends to a constant as the cluster 
size tends to infinity. In that work, the surface is measured by the total number of 
unoccupied sites ( 1 )  which are connected to the occupied cluster by a single nearest- 
neighbour (NN) bond and the cluster size is measured by the total number of occupied 
sites s. The surface-to-volume ratio at the percolation threshold pc is given by 

1 - l -Pc+*s-# ( 1 )  
s Pc 

where the exponent $ was found to be approximately 0.52 in Monte Carlo simulations 
on a ZD square lattice. Thus the 11s ratio tends to an asymptotic constant determined 
solely by p.. 

In Leath's study, all surface sites internal or external to the cluster are included in 
the definition of 1. In more recent years, because of the considerable interest in a 
variety of growth phenomena, one recognizes the importance of separating the internal 
surface sites from the external ones. The reason is simply that the external surface 
sites are often the only ones responsible for growth processes in physical systems. This 
feature is built into several dynamical percolation models, e.g., the invasion percolation 
model (see, e.g., Wilkinson and Willemsen 1983) for fluid displacement in porous 
media, the gradient percolation model for diffusion and invasion fronts (Sapoval el al 
1985, Gouyet et a/ 1988) and the recently introduced Eden percolation model (Cao 
and Wong 1991) for heterogeneous reactions. In each of these cases, one finds that 
the exiernolperimerer and the hull (see, e.g., Grossman and Aharony 1986, 1987 and 
references therein) of the ordinary percolation cluster play a crucial role in determining 
the fractal geometry of a moving front. The effects have also been observed in several 
fluid Bow experiments (Shaw 1987, H u h  et a1 1988, Birovljev et a/ 1991). 
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The external perimeter and the hull are just slightly different definitions of the 
external surface. The former includes only those surface sites connected to  the infinite 
unoccupied cluster by a single of NN bond, whereas the latter allows a path of NN 
and NNN bonds to form such a connection. Both of these objects are now fairly well 
characterized in two dimensions. Computer simulations and exact solutions have shown 
that the external perimeter has a fractal dimension De=! (Grossman and Aharony 
1986, 1987) whereas the hull has a dimension of Dh=f (Voss 1984, Saleur and 
Duplantier 1987). Both of these are different from the mass dimension D,= 1.89. In 
contrast, we note that equation (1) implies that the total surface, which includes the 
internal surface sites, has the same fractal dimension as the mass. So the importance 
in distinguishing the external surface from the total surface is clear. 

While the external perimeter and the hull have been well characterized in 2 ~ ,  much 
less has been done for higher dimensions. The general expectation is that as the 
connected paths are much easier to form in higher dimensions, the probability for 
creating large interior voids should become much less. So one would expect the 
distinction between the external surface and the total surface to diminish with increasing 
spatial dimensions. There should be a critical dimension D, above which the scaling 
behaviour of the external surface becomes the same as the total surface and the total 
mass. Most recently, Strenski et a/ (1991) reported a numerical study of the hull 
generated on a 3~ bcc lattice. With an accuracy of about 1%, they found that D, = 2.52 = 
D,. This suggests that Dc=3.  However, given that Dh and 0, differ by only a few 
per cent in ZD and one expects the difference to  be less in 3 ~ ,  it is very difficult to 
conclude with certainty that the dimensions of the hull and the mass are truly identical. 
To provide a more stringent test, a numerical study of the external perimeter (surface) 
in 3~ should prove useful because the external perimeter is a subset of the hull and 
so there is always a larger difference between the external surface and the total surface. 
For example, D. is significantly lower than Dh and D,  in two dimensions. In other 
words, a determination of De in three dimensions would be a more sensitive indicator 
of how big a difference exists between the external surface and the total mass of the 
cluster. In the following, we describe our simulation results. 

We carried out the simulations on a simple cubic lattice of size ZOO’. Clusters were 
generated one at a time at p = p . =  0.3117 using Leath’s (1976a, b) kinetic percolation 
algorithm. The largest clusters have about lo5 occupied sites. For each cluster, we 
identify the external surface sites (e-sites) as those occupied sites connected to the 
infinite unoccupied cluster by a single NN bond. The total number of such sites is 
called e and the number of unoccupied sites connected to them by a single NN bond 
is called 1. The total number of bonds connecting between the two sets of sites is called 
6. The method for determining these numbers is quite straightforward. For each cluster, 
we first determined the maximal and minimal coordinates along the x, y and z directions 
and constructed an orthorhombic volume that just encloses the cluster completely. 
Each of the faces of this volume is a sheet of unoccupied sites external to the cluster. 
Starting from any site on one of these sheets, we identified its six nearest neighbours 
and checked if there is an occupied site among them. If so, then the centre-site is 
counted as an addition to the set of f-sites, its occupied neighbours are marked as 
e-sites and the connecting bonds between the two are marked as the b-bonds. For 
each of the unoccupied neighbours, we  repeated the same checking and marking 
procedures of their NN sites. In other words, for each site that was checked, new 
external unoccupied sites were identified for further checking until all such sites were 
exhausted. Since only NN sites are checked at each step, none of the interior sites, 
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whether occupied or unoccupied, can enter into the counting of t, e and b. In addition, 
by marking every site when it was first checked, there was no possibility of double- 
checking or over-counting in these quantities. 

The ratios e/s, t / s  and b / s  were determined for each cluster and averaged over a 
total of about 20000 clusters. The dependence of these ratios on the cluster size s is 
shown in figure 1. For the e/s ratio, we note that it starts at 1 for s = 1 and remains 
almost unchanged with increasing s. For s> 100, we estimate that it has a constant 
vaiue of 8.9984 (i), which means that more ihan 99.8% of ine occupied sites are on 
the external surface. Although one might have anticipated the scaling behaviour of 
the external surface to be the same as the mass of the cluster, this very high percentage 
of external surface sites is noteworthy. It is a very strong indication that the external 
surface has the same fractal dimension as the mass and the total surface. Furthermore, 
since the external surface is a subset of the hull and the hull is a subset of the mass 
and the total surface, there is little doubt that the hull must also have the same fractal 
dimension, in agreement with the study of Strenski et nl (1991). These results are 
strong evidence that 0, = 3. 
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up to 10'. e l 3  measures the number of occupied sites on the extemal surface, 11s measures 
the number of unoccupied sites on the extemal surface, and b f s measures the number of 
bonds between the two sets of sites. 

Since there is little difference between the external surface and the total surface in 
3 ~ ,  we would expect equation (1) to be valid for the t / s  ratio of the external surface. 
Indeed, we find that our f / s  data tend to a constant value of 2.206 for large s while 
equation (1) predicts a value of 2.208 for the total surface with p,=O.3117. A least- 
squares fit of the data for s > 100 gives I) = 0.54. This result is shown in figure 2 and 
it can be readily understood from scaling expressions given by Stauffer (1985) (see 
equations 33 and 44, figure 13 and table 2). Stauffer restated Leath's argument for the 
t / s  ratio in terms of the cluster number n, which is defined as the number of s-clusters 

For arbitrary p.  the expression given by Stauffer is 
per site @.e., e!! I s2mp!e ef Ld sites, 0°C !k !s  en 2?erage Ldn, c!us!ers %,i& s sites). 
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Figure 2. For percolation clusters generated on a simple cubic lattice at p r .  a least-squares 
fit of the 11s against s data to equation ( I )  shows that the region with s > l W  is well 
described by an exponent J. =0.54, in agreement with a scaling prediction. A similar fit 
for the b / s  data results in an exponent of 0.67 which may be purely empirical. 

Near the threshold p., n, is expected to follow a scaling behaviour 

n . ( p )  =s- ' f l (P -P~)s -~ l  (3 ) 

for large s, wherefis a scaling function. Substituting equation (3) into (2) immediately 
yields equation (1) with + = 1 - U  and A = (1 - p , ) f ' ( O ) / f ( O ) .  Stauffer's numerical data 
show that f'(0) < O ,  so A is positive constant. The exponent U is related to the other 
critical exponents by U = l / (p  + y) = l/(du - 8). The values tabulated by Stauffer give 
U = 0.45 in 3 ~ ,  which implies + = 0.55. Our result of + = 0.54 is in excellent agreement 
with this prediction. 

It is interesting to note that Leath's ZD simulation is actually in slight disagreement 
with the above scaling prediction. According to Stauffer, U = 8% 0.40 in two dimensions, 
so + = 0.60. This value is a little larger than Leath's result of + 0.52. The difference 
may be attributed to the fact that Leath's simulation was limited to a cluster size of 
s - 1000 which may not be large enough to reveal the asymptotic behaviour, because 
the external perimeter in ZD has a different scaling behaviour and it contributes most 
significantly to the total perimeter for small clusters. To confirm this, we repeated the 
simulation for a ZD square lattice for cluster size up to about s - IO5. The t / s  against 
s data are shown in figure 3. A least-squares fit of the data for s > 300 gives + = 0.60, 
in agreement with the scaling prediction. 

For the number of bonds on the external surface, we find that the b / s  data in figure 
1 approach a constant value of 3.68 for large s. This value is remarkably close to 4 
which is the value for a straight line of connected sites and it also shows how highly 
exposed the percolation clusters are in three dimensions. An attempt to fit the b l s  
ratio by an expression similar to equation (1) is shown in figure 2. The data with 
s>100 may be described by an exponent of 0.67. We do not know of a simple 
explanation for this apparently larger exponent other than the fact that the data quality 
is not as good and the fit is less convincing. 

In summary, we have found that the percolation clusters generated on a simple 
cubic lattice at pc  have over 99.8% of their occupied sites on the external surface and 
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Figure 3. For percolation dusters generated on a m square lattice at p-, the I/S ratio for 
the total surface also obeys equation ( I )  with @=0.60. The range of s used in the fit is 
between 300 and IO'. This result is also in agreement with the scaling prediction. 

the t / s  ratio is well described by equation (1). These results are strong evidence that 
the scaling behaviour of the external surface is the same as that of the total mass of 
the clusters in three dimensions, i.e., 0, = 3. If any difference (such as a logarithmic 
correction) does exist, it is certainly beyond the detection limit of a numerical study 
such as ours. The fact that the external and the mass have the same fractal dimension 
has some interesting implications. First, we note that the mass dimension D,  is about 
2.5 in 3 ~ ,  this may explain in part why fractal surfaces with dimensions around 2.5 
seem to be ubiquitous among a wide variety of physical systems (see, e.g., H u h  et a1 
1988, Keefer and Schaefer 1986, Krohn and Thompson 1986, Schmidt 1989, Wong et 
a1 1986). Second, we note that the Eden percolation model for heterogeneous reactions 
(Cao and Wong 1991) allows blocking particles larger than the growing ones. This 
may enhance the probability for creating interior voids and lead to a different behaviour 
for the surface. Further studies are required to clarify these possibilities. 

This work is supported by the National Science Foundation under grant No. DMR- 
8922830 and the Petroleum Research Fund administered by the American Chemical 
Society. 
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